POME-copula for hydrological dependence analysis

نویسندگان

  • DENGFENG LIU
  • DONG WANG
  • LACHUN WANG
  • YUANFANG CHEN
  • XI CHEN
  • SHENGHUA GU
چکیده

Hydrological multivariate analysis has been widely studied using copula-based modelling, in which marginal distribution inference is one of the key issues. The main object of this study is to discuss the applicability of the principle of maximum entropy (POME) in marginal distribution inference, thus to develop a POME-copula framework to analyse the dependence of hydrological variables. Marginal distributions are derived with the POME approach before bivariate copulas constructed with corresponding parameters estimated by the dependence of the derived margins. The proposed POME-copula has been employed in hydrological dependence analyses, with the annual maximum streamflow and water level collected from the Yangtze River, and the monthly streamflow from the Yellow River. Results show that the POME-copula method performs well in capturing dependence patterns of various hydrological variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating Entropy and Copula Theories for Hydrologic Modeling and Analysis

Entropy is a measure of uncertainty and has been commonly used for various applications, including probability inferences in hydrology. Copula has been widely used for constructing joint distributions to model the dependence structure of multivariate hydrological random variables. Integration of entropy and copula theories provides new insights in hydrologic modeling and analysis, for which the...

متن کامل

GJR-Copula-CVaR Model for Portfolio Optimization: Evidence for Emerging Stock Markets

Abstract T his paper empirically examines the impact of dependence structure between the assets on the portfolio optimization, composed of Tehran Stock Exchange Price Index and Borsa Istanbul 100 Index. In this regard, the method of the Copula family functions is proposed as powerful and flexible tool to determine the structure of dependence. Finally, the impact of the dep...

متن کامل

Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask

This paper presents an introduction to inference for copula models, based on rank methods. By working out in detail a small, fictitious numerical example, the writers exhibit the various steps involved in investigating the dependence between two random variables and in modeling it using copulas. Simple graphical tools and numerical techniques are presented for selecting an appropriate model, es...

متن کامل

Tail dependence for weighted mean of two copula function

In this paper, we study the properties of power weighted means, arithmetic, geometry and harmonic for two copulas.

متن کامل

Maximum Entropy-Copula Method for Hydrological Risk Analysis under Uncertainty: A Case Study on the Loess Plateau, China

Copula functions have been extensively used to describe the joint behaviors of extreme hydrological events and to analyze hydrological risk. Advanced marginal distribution inference, for example, the maximum entropy theory, is particularly beneficial for improving the performance of the copulas. The goal of this paper, therefore, is twofold; first, to develop a coupled maximum entropy-copula me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015